If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying m2(9m + 6) = 8m Reorder the terms: m2(6 + 9m) = 8m (6 * m2 + 9m * m2) = 8m (6m2 + 9m3) = 8m Solving 6m2 + 9m3 = 8m Solving for variable 'm'. Reorder the terms: -8m + 6m2 + 9m3 = 8m + -8m Combine like terms: 8m + -8m = 0 -8m + 6m2 + 9m3 = 0 Factor out the Greatest Common Factor (GCF), 'm'. m(-8 + 6m + 9m2) = 0 Factor a trinomial. m((-4 + -3m)(2 + -3m)) = 0Subproblem 1
Set the factor 'm' equal to zero and attempt to solve: Simplifying m = 0 Solving m = 0 Move all terms containing m to the left, all other terms to the right. Simplifying m = 0Subproblem 2
Set the factor '(-4 + -3m)' equal to zero and attempt to solve: Simplifying -4 + -3m = 0 Solving -4 + -3m = 0 Move all terms containing m to the left, all other terms to the right. Add '4' to each side of the equation. -4 + 4 + -3m = 0 + 4 Combine like terms: -4 + 4 = 0 0 + -3m = 0 + 4 -3m = 0 + 4 Combine like terms: 0 + 4 = 4 -3m = 4 Divide each side by '-3'. m = -1.333333333 Simplifying m = -1.333333333Subproblem 3
Set the factor '(2 + -3m)' equal to zero and attempt to solve: Simplifying 2 + -3m = 0 Solving 2 + -3m = 0 Move all terms containing m to the left, all other terms to the right. Add '-2' to each side of the equation. 2 + -2 + -3m = 0 + -2 Combine like terms: 2 + -2 = 0 0 + -3m = 0 + -2 -3m = 0 + -2 Combine like terms: 0 + -2 = -2 -3m = -2 Divide each side by '-3'. m = 0.6666666667 Simplifying m = 0.6666666667Solution
m = {0, -1.333333333, 0.6666666667}
| 2000=1000 | | y=6/7x+4 | | -1y-5/-9y | | 3z(5z+6)=15z^2+18z-1 | | 9r^3+18r^2=72 | | -8x+y=53 | | 9x+5y=-29 | | -8x+y=25 | | 8x+2y=-22 | | 9y^2-45y/-9y | | log(4)*(5x-3)=1 | | 3/x-2=70 | | (3i/4-i) | | (31/4-i) | | 3x^2+x=-5x | | x^2-7w=18 | | 3i/4-i | | 114/16x11 | | 3+9i/7+3i | | -4(4v-2x-1)= | | x^3=100y | | 2x-18+5x-5=180 | | (x^2-16)(6x+1)=0 | | x^2/6-5z/2-9=0 | | 2x^5-128x=0 | | 3i/4-1 | | 3x+33=8x-47 | | y=-2/3x-1/6 | | 242=(13+x)*17 | | -20+(-50)^2/60 | | 23=x*3+x+y | | 6-10x=24-17x |